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We prove that unbounded spin systems with superstable two-body interactions 
have generalized susceptibilities which are strictly positive. This result is then 
used to prove that the decay of the correlations cannot be faster than the decay 
of the potential if the potential decays with a power law. 
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1. INTRODUCTION 

Unbounded spin systems with superstable interactions have very nice 
properties which have been used to established the existence and the 
uniqueness of the equilibrium states (1'2) and to discuss the decay properties 
of the correlation functions. (3-6) 

In this note, we use these same properties to show that the generalized 
susceptibilities Z,d are strictly positive (Section 4), where 

Za = ~ ((dxdy)- (dx)(dy)) 
yE ~v 

with d(q) an arbitrary function of the spin variable which satisfies the 
condition that I d(q)I <~clql. In Section 5, we then consider two-body 
potentials which are integrable and which have a power-law decay at 
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infinity; under reasonable conditions, it is shown that if the correlation 
functions are assumed to decay faster than the potential then Xd = 0. It thus 
follows from the previous result that the decay of the correlation functions 
cannot be faster than the decay of the potential. In Section 3 it is shown that 
for finite volume there exist certain canonical states which obey canonical 
sum rules of which Xd = 0 is a special case. These sum rules which are thus 
not valid for infinite systems if the potential is integrable are similar to those 
obtained for continuous Coulomb systemst'); it is expected that they will 
hold whenever the potential decays slower than or as tx[ -tv-1), as Ixl-~ c~, 
with v the dimension of the lattice. The superstability estimates necessary for 
the proofs are given in Section 2. 

2. INFINITE SYSTEMS EQUILIBRIUM STATES: 
DEFINITIONS 

We consider a classical lattice system defined on 2 ~. At each site 
x E 7/~ is associated a random spin variable qx, which takes values in R d, 
d E N. The configuration space of the system is thus 

-Q = {q = (qx)x~zv} 

and qA, for A c 7/v, is the restriction of q to the region A. ,Q is a topological 
space with product topology inherited from R a. We denote by M(,Q) the set 
of Borel probability measures on ,Q, with the topology determined by the 
continuous bounded and cylindrical functions on ,O. 

For each spin qx a free measure ),(dqx ) is given where )~(dq) is a positive 
Borel probability measure on R d. The one-body potential is included in the 
free measure which is thus dependent on fl, the inverse temperature. We 
suppose that there exists r > 0 such that 

2(dq) e '~q2 < oo (2.1) 

We also suppose that )~(dq) is not concentrated on a single value of q, that is 

2(dq) ~e 6(q - qo) u E R d (2.2) 

The interaction is defined by means of a two-body potential Oxy(qx, qy), 
where ()xy(q, q ' )  is a real function on [R d • R a which is assumed to satisfy 
the condition 

I•x,(q, q')l <~ J(I x - Yl) lq] Iq' l (2.3) 
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where J(n) is a decreasing function of n C N, such that 

J(n) <. Kn-~-~ (2.4) 

for some K and e positive. 
Equations (2.1) and (2.3) easily imply that the system belongs to the 

class of systems for which the superstability estimates are valid ~1) if we add 
the assumption 

r > .1/2 (2.5) 

where 

J=  Z J(Ixl) (2.6) 
Or 

These systems have some nice properties, exploited in Refs. 1 and 2. 
The main one is the following: Let M0(,Q ) cM(X?) be the set of probability 
measures/1 with the following properties: 

(1) g is a DLR measure, i.e., for each finite A c 2 ~ the conditional 
probability/~ [dq A ] qAc] satisfies the equilibrium equations 

p[dqA I qAc] = ZA(qac)-l)c(dq~,) exp[--flH(qa ]qAc)] (2.7) 

/~ a.e. with respect to the conditioning spins qA~" Here ZA(qAo ) is the 
normalization constant, 2(dqA) = [7t~A 2(dqx) and 

then 

(2) 

H(qa I qAc) = �89 ~. Ox,(qx,q,) + ~. ~xy(qx, q,) 
x , y ~ A  x ~ A  

x ~ y  y e A  e 

If we define 

(2.8) 

RN= lqC.C2 S ~ q~ ~ N 2 ( 2 j +  1) ~, Vj/>01 (2.9) 
Ixl <~J 

Notice that Eqs. (2.7) imply that Ha(qA[qAc ) is (almost everywhere) well 
defined. In particular the function 

W(qx ; q z~/x) = H(qx t q z,/x) (2.11) 

is well defined. 

In Refs. 1 and 2, the following theorem is proved. 



240 Benfatto and Gruber 

Theorem 2.1. If conditions (2.1), (2.3), (2.5) are satisfied, the set 
M0(.q ) is not empty. Furthermore, for any y > 0 such that 

7 < fl(r --J/2) (2.12) 

there exists a constant 6 such that for any finite A ~ Z ~ and any/z C M0(.O) 

Remarks 

(1) Theorem 2.1 is valid under a condition weaker than (2.5). In fact, 
it is sufficient that there exist two positive constants A and B such that for 
any finite A ~ ~ v, 

rq2x+�89 ~' 0xy(q~,qy)/> ~ (Aq~--B) (2.14) 
xEA x , yEA  x~A 

xC-y 

However, in the following we shall need a bound on the interaction also 
stronger than Eq. (2.5) [see Eq. (4.7)]. 

(2) Equation (2.3) implies that 0~y(q, q ' ) =  0 if q or q' is zero; this 
condition can always be realized by changing the free measure. If the 
potential satisfies the condition 

IO~y(q, q')t <~J(t x - Yl)Iql '~ ]q' 14 

a change of variable will reduce this model to the case treated in the paper. 

3. S U M  RULES FOR FINITE SYSTEMS 

Let A be a finite subset of 7 v and let O A={qA=(qx)x~At be the 
configuration space of a "finite system in the volume A." For any function 
d(q) on pa  such that [d(q)l ~< e Iql, we define a "canonical state DA" for the 
system in the finite volume A be a probability measure/2 A o n /2  A such that 

where Pa(qn) is a measurable function on -(2a, integrable with respect to 
)-(dqa). 

Introducing the correlation functions 
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where X ~ A, we have 

1-[ (qx)'} ~ = 1~ ,~(dqx)p2'(qx) 1~1 ~ (qxS .~ (3.3) 
= j = l  x E X  i = 1  d = l  

where X =  (xl,...,xk), n i j~  N, (...)(A) denotes the expectation with respect 
to Ft a and we are supposing that all the moments of ~t A are finite. It follows 
immediately from these definitions that /~A satisfies the following "sum 
rules," analogous to those derived in Ref. 7 for continuous systems: 

(~,(dqy) d(qy) LO(xa)(qxqy) -- p(A)(qx) p(~)(qy)[ 
y ~ x  " 

= -- / X~ [d(qx) - (d(qx) )  (A) ] p~XA)(qx) (3.4) 
x ~ X  

which imply in particular the following identity: 

[(d(qx) d(qy))~A)--(d(qx))~A)(d(qr))~a)] = 0  
y ~ A  

(3.5) 

The equilibrium states of the infinite system are defined by correlation 
functions Px(qx)  which are solutions of some equilibrium equations, such as 
DLR, Kirkwood-Salzburg, or other equivalent equations. It is expected and 
often can be proved that the equilibrium states of the infinite system coincide 
with the thermodynamic limit A ~ 7/~ with IA I-1DA fixed. We are therefore 
led to ask whether or not the sum rules (3.4) will still be valid for the infinite 
systems introduced in Section 2. We shall show in the following that these 
sum rules cannot be valid for systems with forces satisfying the integrability 
condition (2.4). This result is similar to the one obtained for continuous 
systems. (8) 

4. SUSCEPTIBILITY OF THE INFINITE SYSTEM 

Let us consider an infinite system satisfying the conditions discussed in 
Section 1 and let/~ E M0(s ). With A c 7/~ a finite set, we define 

QA = ~ qx (4.1) 
x E A  

From Theorem 2.1 it immediately follows that all the powers of QA are 
integrable with respect to ~t. Then it has a meaning to consider the quantity 

1 
XA = ~ [(Q~) - (QA)  2 ] (4.2) 

where ( - . . )  denotes the expectation with respect to/~. 

822/37/1  2-16 
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Suppose that p is translation invariant and that 

Pr( x -- Y) = (qxqy) -- (qx)(qy) (4.3) 

satisfies the integrability condition: 

pr(z) < o0 (4.4) 
zEZv 

Then it is easy to show that ZA has a limit as A -+ ~ ~ and that 

Z =  h m z z a =  ~ pr(z)  (4.5) 
zEZv 

X is called the susceptibility of the system in the state/2. Then, if the sum rule 
(3.5) were valid for the infinite system, the susceptibility would be zero. In 
this section, we want to show that this is not the case for integrable potential 
and thus the sum rule cannot hold. In fact we shall prove the following 
theorem. 

Theorem 4.1. Let us assume that a classical lattice system satisfies 
the conditions (2.1)-(2.4) and the condition [which implies (2.5)]: 

J 
r > ~ - + J ( 1 )  (4.6) 

Then, if # E Mo(.O ), there exists a constant M > 0 such that,for any finite 
A c 7 7  ~ 

XA ) M (4.7) 

In order to prove the theorem we need some lemmas where we use some 
ideas imployed in Ref. 9 by Ginibre for a similar problem. 

In the following, we shall always suppose that the conditions (2.1)-(2.4) 
and (4.6) are satisfied, that # C M0(~2 ) and that A c 7/v is a finite set. We 
add also the condition 

; ),(dq)q = 0 (4.8) 

which simplifies the notation; it is not restrictive since X does not change if 
all the spins are translated by the same quantity, i.e., if the define 
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Lemma 4.1. With W(qx;qz,/x ) the function defined in Eq.(2.11), 
then the function on/2  

Aa(q )=  ~ Ax(q)= /V' (2(d(lx)qxexp{_fl[W(~lx;qz,/x) 
x EA  x E A  " 

-- W(qx ; qz~ (4.9) 

is summable with respect to a and 

(QA) = (Aa) (4.10) 

Proof. Equations (2.7), (2.8), (4.1) and Fubini's theorem imply that 

L f ,ldq,.l f l expl--j6H(qAlqA.)}qxf2(dr 

= A_ \" f /.t[dqAc]fJ.(dqA)ZA(qac)-lexp{--flH(qalqA,)} 
xEA  

• f ,~(dex)cL exp{-~[ w(~/x; q.u/x) - W(qx ; qz./x)] } 

where we used the fact that f 2(dq)= 1. II 

Lemma 4.2. QaAa(q) is summable with respect to/z and 

(Q~) - (QAAA) = (BA) (4.11) 

where 
B n =  Z qx 2 (4.12) 

x E A  

Proof. Using Eqs. (4.1), (4.8), and (4.12), we find 

XI,X2EA x ~ A  
Xl~X2 

Proceeding as in Lemma 4.1, it is easy to show that, if x I ~ x 2 

(qx~qx2) = (qxl f 2(dilx~)Vtx2 exp{--fl[W(qx:; qz,lx2) 

PV(qx. ; qz,,/x,)]} ) 



2 4 4  Ben fa t t o  and Gruber 

and that 

(q~fqx~J,(dFlx))=(qx~f)~(dglx,)glxlexp{-fl[W(gtx~;qz~/x~) 

--  W ( q x l ;  qz,/x,)]}) 

These equations immediately imply (4.11). II 

I-emma 4.3. Ax(q): is summable with respect to ~t and there exists a 
positive constant M 1 such that 

( A 2 x ) ~ M 1  V X ~ Z  v (4.13) 

Let us define 

Proof. By Eq. (4.9) 

(A ~) = ( f  2(dq'~) ~,(dq~) q'xq; exp{-fl[ W(q~ ; qz,/~) 

+ W(q'x';qz~/~) - 2W(qx; qz~/x)]}) 

EA= {q[lqxl2 <alog+ lxl, V x E A  ~} 

where log+ ]xl=max{1,1og]x]}. The superstability estimate 
implies ~2) that, if a is sufficiently large,/~(EA) ~ 1. Then 

A ,,,~Z ~ 

(2.1) easily 

(A~) <~ li/rnzv fEAl~[dqa~] f ),(dq~x)J,(dq~)lq~x] iq~x~l 
A ~x 

X Za(qac )-1 exp [--flH(qa, q'x, q• i qac)] (4.14) 

where 

tl(qa q'xqx ] qAc) = H(qa I qac) -- 2W(qx ; qzo/x) 

W ' W . . . .  + (qx ; q z,/x) + ~,qx, q z,/x) 

can be thought as analogous to H for a new spin system obtained by 
adding two spins q~ and q~'. We denote by . ~  the set Z ~ U {x', x"}, where x'  
and x" are two copies of x, and by ~ = (q~)z~ a configuration of the new 
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system. The interaction of this system is described by the two-body potential 
ff~,~2(q, q'), where 

~g I ~(q, q') = 

Oxz2(q,q') if Z l ~ { X ' , X "  }, z z C T / " / x  

G,~(q,  q') if z~, z z C Z~/x 

-Ox22(q,q') if z ~ = x ,  z 2 ~ Z~/x 

0 otherwise 

It is easy to see that Eq. (4.6) 
superstability condition (2.1). 

Let us now consider the function 

implies for the new system the 

PA(qx, q'x, q;)  = Za(qac) -1 2(dqA~) exp[--flH(qAqxqx I qAc)] (4.15) 

If qac C E a, we can proceed as in the proof of Theorem 4.1 of Ref. 2 in 
order to show that, if A is sufficiently large, 

PA(qxq'xqx') <~ exp[(flr -- 7)(q~ + q,2 + q:~2) + 36] 

for a suitable 3, independent of qac and A, and 

(4.16) 

y < fl[r -- J/2 -- J(1)] 

The only difference with respect to Ref. 2 is that in (4.15) Za(qAc ) is the 
normalization constant of the old spin system. However, it is possible to take 
this fact into account in a trivial way (we omit the details). (4.13) 
immediately follows from Eqs. (2.1), (4.14), and (4.16). II 

Lemrna 4.4 .  There exists a constant M 2 > 0 such that 

I(A 2) -- (Q2)I ~< ME IA[ (4.17) 

ProoL By some simple algebra 

{A~) - (Q~) = ~ [(.4 2) - (qx2)] 
x ~ A  

+ ~ ( f  2(dC]x )2(d~y) qxqy{exp[flO(qxgly) 
X,yEA 

x ~ y  

+ flr - flO(qxq,) - flqi(qxqy)] - 1 }) 
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Equations (2.1) and (2.13) imply that (qx z) ~< C o, Vx C Z ~, for a suitable Co. 
Then, using Lemma4.3 and again Eq. (2.13), 

where 

I(AZA)--(QZA)I~(Co+MOIA[+ ~ ~ C~, (4.18) 
x ~ A  y~ex 

Cxy = e 2~ f 2(d~x ) 2(d~y) 2(dqx ) 2(dqy) ]qx I I qy I 

• exp[-(y  - rfl)(q2x + q~)] 

• {exp[flJ([x - yl)(qx 2 + q~ + r + c]~)] - 1} 

fle2~J(I x - y I) f )L(a(lx) 2(d(l,) ~,(dqx) )~(dqy) t q~ ]1 qy [ 

• [qx z + qy2 + ~]x 2 + ~]~] exp{-[y - rfl -flJ(1)](qZx + qZy) 

+ 

Equation (4.17) follows from (4.18), (4.6), and (2.1), if y is near enough to 
f l ( r - J /2 )  [see Eq. (2.1)]. 

I.omma 4.5. There exists a constant M 3 > 0 such that 

(BA) ~ M 3 IAI (4.19) 

Proof. Let x be an arbitrary point in Z v. By Eq. (2.4) 

g(dqx) = 2(dqx) f P [dqz~/~] Zixl (qzo/x)-I exp [-flW(q x ; q z~/~)] 

Let 

EB,~= {qzv/xlq 2 < B + a l o g l x - -  y[ Vyva x} 

If qz~/x E Es, a, using Eqs. (2.3) and (2.4) we find 

I W(qx;qzo/x)[<~�89 ~ J ( { x - y l ) [ q x  2 + B + a l o g ] y - x ] ]  
y e x  

~<1 2 ~Jqx + C 

for a suitable C > 0. Then 

p(dq~) >~,~(dqx)e-, qx- 2(dq)e~Jq 2+c g(EB,~) 
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By Eqs. (2.1) and (4.6), there exists a constant D > 0 such that 

12(dqx ) >/D2(dqx) e-  ~sq~ U(EB,a) 

Furthermore, by Eq. (2.13) 

p(Es,a)/> 1 - ~ ~ )],(dqy) egrq~e - ~'+~ 
y : k x  J q2>B + a l o g  lx--Yl  

>/1 - ~ I 2(dqy) e3rq~ e-  ~q~+z e rr log ix-yl) 
yC-x 

y~ Ix'-- yl yo 

Then, if B and a are sufficiently large, there exists E > 0 independent of x, 
such that 

~(dqx) >~ E~(dqx ) e-  ~q~ 

This immediately implies Eq. (4.19), if" one takes in account Eq. (2.2). | 

Proof o[ Theorem 4. 1. By the Schwartz inequality 

((Q~ - < Q A > 2 ) ( < A a A )  - -  <AA) 2) >/ ( < Q A A A )  - -  < Q A ) < A A ) )  2 (4.20) 

Using (4.10) and (4.11), we can write 

<AA) 2 = (QA) 2 = (Q~) - A ~  = (QAAA) + <BA) --AEA (4.21) 

where 

i.e., 

A] = ( Q ] ) -  (QA) 1 

Inserting (4.21) and (4.22) in (4.20), we obtain 

+ - < Q A A A >  - -  < B A > ) / >  - -  2 

A]((A~t > -- (QAAA) + (BA))/> (BA) z 

and, using again (4.11), 

AZ(<A~) -- (Q] )  + 2(BA))/> (BA) 2 

(4.22) 

(4.23) 
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Equations (4.17) and (4.23) imply that 

which implies, by Eq. (4.19), 

(a~)  2 

2(Ba) + M2 [AI 

1 ~ ((Ba)IA[-~)~ ME > 0 | 
ZA = ~A-VAA >/2(BA ) IAI-' + Mz >/ 2M3 + M2 

Benfatto and Gruber 

Theorem 4.2. Let d(q) be a real function of the spin variable which 
is not constant on the support of ).(dq) and such that [d(q)I < C tq]. Under 
the conditions of Theorem 3.1 there exists a constant M > 0 independent of 
A such that 

I A  1-1 [(D~) - -  (DA) 2] >~ M 

D A = ~ d(qx) 
x E A  

where 

This theorem expresses the strict positivity of the generalized susceptibility 

Za = )imz, [A [- '  [ ( D ~ ) -  (DA) 2 ] 

and is proved in the same manner as Theorem 4.1. One first introduces the 
inessential condition f 2 ( d q ) d ( q ) = O  and then the quantities A A and B A 
replacing q by d(q). Note that for translation invariant states 

(4.24) Xd = ~,  ((d(qx) d(qy)) - (d(qx))(d(qy))) 
y ~ Z  v 

if the sum is finite. 

5. SUM RULES AND CLUSTERING PROPERTIES FOR 
INFINITE SYSTEMS 

We consider an infinite system satisfying the conditions of Section 2 
and we furthermore assume that the two-body potential is symmetric, tran- 
slation invariant, and has a power-law decay at infinity with power 7, i.e., the 
condition (2.4) becomes 

k 
4 n )  ~< n~' ~ > v (5.1) 
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and 

Y lim 3~ ~x+Za,xl(q, ql) = da(q, ql) (5.2) 
A --*oo 

with z7 some fixed unit vector and da(q, ql) not identically zero. 
It then follows from (2.3) that 

Ida(q, ql)l-K< c lql Iq,I (5.3) 

If/z c M0(~2) and X c Z v is a finite set, we define the correlation function of 
/x for the set X by 

/2 (dqx) = )~ (dqx) Px(qx) (5.4) 

In the following, to simplify the notation, we shall consider only tran- 
slation invariant states. Let d(q)= da(qo, q) with q0 any fixed value for 
which Px(qo) 4: O. In this section, we shall establish the following result. 

T h e o r e m  5.1. Assume that the two-body potential satisfies the 
conditions (5.1) and (5.2); then, for any (translation invariant) equilibrium 
state/~ E M0(/2), the following sum rule 

~S ~ [ (d(qx)  d ( q y ) )  - ( d ( q x ) ) ( d ( q y ) )  ] = 0 
y ~  

is satisfied whenever the clustering is faster than the decay of the potential, 
i.e., whenever for any finite sets X1 and X 2 

lira 2rLOx,,x2+~ta - px,Px2+~ta] = 0 (5.5) 

together with 

I Px,, x2(qx,, qx2) - -  P X l  (qx,) Px2(qx~)l ~< 
~]Xll  + IX21 exp(AZx~x~ ~x2 q2) 

d(Xl, X2) r + 1 

where ~ and A are some constants, A < fir, and 

(5.6) 

d(X1,X2)= rain Ix 1 -Xz l  
X1EX1 
X2EX2 

From Theorems 4.2 and 5.1, we immediately have the following theorem. 

T h e o r e m  5.2. Suppose the two-body potential has a power law 
decay satisfying (5.1) and (5.2) with a function d~(ql,q2 ) which is not 
constant on the support of 2(dql ) �9 2(dq2 ). Then for any translation invariant 
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equilibrium state ~tEM0(.O ), the clustering (defined as in Theorem5.1) 
cannot be faster than the decay of the potential. 

To establish Theorem 5.1, we first remark that any equilibrium state 
lzEMo(12 ) satisfies the following Kirkwood-Salzburg equations (see 
Appendix A): 

Pxx(qxqx) = e-~W(qx;qx) Z (2(dqv) Kx;r(qx ; qr) 
Y= Zv/Xx �9 

• Pxxr(qx = O, qx, qr) (5.7) 

where X is any finite set, x ~ X, and 

W(qx ; qx) = ~ Oxy(qx, qy) 
yEX 

W(qx;qx)=O if X = r  

Kx;r(qx ; qr) = 1~ [e-~'x~(q* 'q~' - 1] 
y E Y  

Kx.,r(qx ; qr) = 1 if Y = O 

(5.8) 

It then follows from (5.7) that 

Pxx,(qq,) -Px(q)Px,(ql) 

= e-~Oxx~(q'q') Z f 2(dqr) Kx;r(q; qr) 
Y= Z~/xx 1 

• [Pxx~r --PxlPxr](qx = O, ql, qr) 

+ Kx;x~(q;ql) ~ f 2(dqr)Kx;r(q;qr)Pxl(ql)Pxr(qx=O, qr) 
Y= Zv/XXl 

- -  P x l ( q l )  f / ~ ( d q l )  Kx;xl(q; ql) e~*xxl(q'q~) Pxxl(q, i1~) (5.9) 

In the following, we are going to study Pxx,-PxPx, in the limit t x -  x l l ~  m. 
Let 

x a = x + 2d 
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Using (5.2) and (5.9) we have 

lim 2~(pxa~,-px~Pxl)(q, q,) 
A ~ c ~  

= lira ~ s )~(dqy) Kx~ ;v(q; qr) 
~ o 0  y ~  Zu/XAX 1 

X [P~axr --Px,Px~r](q = 0, qlqr)  (I) 

-- fld~(q, ql) lim Z f 2(dqy) Kx~;r(q; qv) 
A ~  y = Z v / x A x  l 

X p~,(q,)P~v(q = O, qr) (II) 

p~,(q~) lim 2Yf 2(dq,) Kx~;xl(q; ql) e~~ (III) 

Therefore assuming the clustering condition (5.5) we have 

O = ( I ) + ( I I ) + ( I I I )  

The idea to evaluate the right-hand side is to notice the following: In (I) only 
those Ys with one point y near x I and the other points Y/y = Y near x z will 
contribute; since 

Y ~ T 2~K~a;y(q;qy)~-fld~(q, qy) and px~txl --Px,P~ar P~,yPx~,7 

we obtain: 

(I) : ~. 1 2(dqy)l-fla,~(q, qy)] f )~(dqg) K.:~(q; qf) 
y e  Z~/x  l ~ 
"7= Z~lx  

r 0 X Pxly(qa qy) Px~(q = , q~) 

= Z f ;~(aq , ) [ -~da(q ,  ~ , qy)] Pxly(ql qy)Px(q) 
Y E Z v / X l  

In (II) only those Y's near x z will contribute, i.e., 

(II) = --flda(q, qa)Pxl(ql)Px(q) 

Finally, using the clustering property 

(III) = flflx,(ql) P~(q) f 2(dch) da(q, ql) Px,(qO 
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Therefore, assuming Px(qo) 4:0 we obtain 

0 = -  ~ f)~(dqy)d~(qo,qy)pTx,y(ql,qy) 
y~ZV/Xl  

(5.10) 

The rigorous deviation of (5.10) is given in Appendix B. Let then d(q)= 
da(q0; q); multiplying (5.10) by f )~(dq 0 d(qi), we obtain 

0 = - -  ~" f)~(dq,)f),(dqy)d(ql)d(qy)prxly(q,,qy) 
y~ Zv/xl  

= -- ~ [(d(qx, ) d(qy))  - -  (d(qxl) ) (d(qy))  ] (5.11) 
y ~ Z  v 

which concludes the proof. 

Remark. Let us note that the condition on da(qi,q2) introduced in 
Theorem 5.2 is not very restrictive, since otherwise the asymptotic behavior 
of the potential would be independent of the spin variables. 
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APPENDIX A 

In this appendix, we shall derive the Kirkwood-Salzburg equations for 
the family M0(s ) of equilibrium states defined in Section 2. We need the 
following lemma. 

Lemma A.1. If X is a finite set, z CX,  and f(qx) is any bounded 
measurable cylindrical function with base in X, then 

z EA  
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Proof. We will proceed as in the proof of Lemma4.3. 
{q ] Iq~l 2 ~< a log+ Ix I, Yx ~ A ~ } and a is sufficiently 
12(limA/z~Ea) = 1, C2) which implies that, for any fixed q~ C [Ra 

V Oz,y(qz, qy) , 0 (qz~/x a.e.) 
y ~ A  c 

z ~ A  

If E A = 
large, 

By dominated convergence, it is then sufficient to show that 

where ~+,y is the positive part of ~ ,y .  By Eq. (2.7) 

= lim f y(dqAc) f 2(dqA)If(qx)J ZA(qA~) -~ exp[--flI4(qA(qA~)] 
A ~ Z  v 

A ~ X  

(A.2) 

where H is the analog of H for a spin system with the potential 

0xy(q,q') if x,y=/=z 
~xy(q,q') = Ozy(q,q') if x = z  and 0zy(q ,q ' )<0  

0 if x = z  and Ozy(q,q')>/O 

Of course, this new spin system satisfies the superstability condition (2.1) 
with the same constants A and B of the old one. Then, by the same argument 
used in the proof of Lemma 4.3, if A is sufficiently large the integral in 
Eq. (A.2) can be bounded by a constant independent of A. 

By Eqs. (A.1), (2.7), and (5.4), i f z E X  

A ~ X  

Z , exp 

But ~xy(0, qy) = 0, then H(qA/z Iqa~) = It(qMz q~ = 0 I qA~)" Therefore, using 
the definitions (5.8) 

A ~ X  

• f/2(dqAc)f 2(dqA/xr)ZA(qac)-' e -~mqA/~qz:~ 
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which implies that 

P~x(qzqx) = e-~W(q~;qx) Z 
Y ~  Z v / X z  " 

z ~ X  

The series in Eq. (A.3) is absolutely convergent. In fact, by Eq. (2.13) 

( i ( dq r )  [K~;r(qz ; qr)[ P~xr(q~ = O, qx, qr) 
Y = Z v / z X  " 

X E X  

X H l+e~2(dq,)le-~O"(q~'q')-lle(~-YM" I 
y E Z v / X z  

~exp  l~(]Xl+ 1)+(fir-y)~2 qx 2+ '~_2 e~/U(lz-yl)lq,[ 
x E X  y C z  

( 2(dqr ) K~;r(q~ ; qr) P~xr(q~ = O, qx, qr), 

(A.3) 

X f i(dqy)e~rq~lqy]e-~q2e~S(1)rqz"%' I (A.4) 

which is finite, thanks to Eqs. (2.1), (2.4), and (4.6), if 7 is suitably 
chosen. I 

APPENDIX B 

Contribution (11) 

It is sufficient to 
substitution 

show that (II) does not change 

lim ~ = lim 
1 - . o 0  A - ~ c c  Y c  Z u / x . l x l  y ~  Z v / x  t 

if we make the 

In fact, using the invariance under translation, 

lim ~ (2 (dq r )  Kxa;r(q; qr)Pxar(q = O, qr) = Px(q) 
A--*oo y ~ Z v / X  x 

Let us then consider the contribution due to those Y containing x I : 

lim ~ f i(dqxl) Kx~;xl(q; qxl) f g(dqr) Kx~;r(q; qr) 
A ~ o o  y c  Z v/XAXl 

• Pxaxlr(q = O, qxl' qr) 

= lim f X(dqx,) Kxa;x~(q; q~) Pxax,(qqx~) 
F1. --* oO 
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But, by Eq. (2.13) 

and 

IPx~x,(q, qx,)l <~ e (~- 7)(q2+q21) eZ~ 

IKx~;x~(q; qx~)l <~flJ(I xa - x,I) Iql Iqx, I e ~J(Ix~-x' I) Iql Iq~,l 

which imply that the integrand is uniformly bounded by an integrable 
function; since the integrand converges pointwise to zero as s ~ 0o, we have 
concluded the proof of (II). 

Contribution (111) 

(III) =--Px,(qa) lim fs A~oo 

Since 

[Kx~:x,(q; [~1) e ~ O ~ X l ( q ' q l ) [ ~  f lJ([  X x  - -  x l  l ) Iq[ I  ql I e~J(rx~-xll) Iol le, I 

using (5.1) we can again apply the dominative convergence theorem to 
permute limit and integral. 

Contribution (I) 

(A) Y =  4, s PxaPxl] ~ 0 by assumption 

(B) 0 
(B 1) If I y] > 2/8 for all y E Y, then there exists 2o such that, for 2 > 2o 

]y -x1]  >s I x a - x l ]  >s The contribution of these sets can be 
bounded by 

( s IKx;r(q; qv)i 2v IPx~x,,v~-P~,Px~r~l 
Y~  Z~/x " 

~< v~o/x of X(dqv)IKx~r(q; qv)]2' (2/16)'  exp 

Proceeding as in the last part of Appendix A 
integrand is thus bounded by an integrable function; 
convergence this contribution yields zero. 

[see Eq. (A.4)] the 
applying dominated 
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(B2) The contribution of  the sets Y =  {Yl "'" Y.} such that ]y/[ < ~,/16 
and ] y / >  2/8 for all j 4= i can be bounded by 

~ f 2c(dqi)2YKxa;'i (q; qi) f ~'(dqr) Kxa; ~(q; q~){"" } 
lYil<A/16 Y ~ Z ~ / x  A" 

Yi~:xl lyfl >A/8 

{"" t = { [Pxax,y,~ --Pxly,Px~f] + Px~[Px, y,--Pxl Py,] 

-- PXl [Pxay,f -- Py, Pxas 

Once more, using Appendix A and (5.1), we can apply dominated 
convergence and only the second term in the bracket will yield a nonzero 
contribution. 

(B3) If  2/16(Jyi1~2/8 and l y j l > 2 / 8  for all i • j ,  then a similar 
argument shows that this contribution is zero since 

2 r[PxXxl v --Pxl P~ar] ~ 0 

(B4) All the contributions with more than one point Yi in Y such that 
[Yil < ~./8 will give zero using similar arguments. 
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